MandysNotes

Tuesday, 13 November 2012 18:53

Derivatives of Trigonometric Functions

By  Gideon
Rate this item
(0 votes)

\[ \frac{d}{dx}{ \color{Goldenrod}\sin}\ {z} = {\color{Blue}\cos}\ {z} \]

 

\[ \frac{d}{dx}{\color{Blue} \cos}\ {z} = -{\color{Goldenrod} \sin}\ {z} \]

\[ \frac{d}{dx} {\color{Green}\tan}\ {z} = {\color{Purple}\sec}^{2}\ {z} \]


\[ \frac{d}{dx}{{\color{orange}\csc}\ {z}} = - {\color{orange}\csc}\ {z}\ {\color{Brown} \cot}\ {z} \]


\[ \frac{d}{dx}{ {\color{Purple} \sec}\ {z} } = {\color{Purple}\sec}\ {z}\ {\color{Green}\tan}\ {z} \]

 

\[ \frac{d}{dx}{ {\color{Brown} \cot}\ {z} } = - {\color{orange}\csc}^{2}\ {z} \]

Read 2214 times Last modified on Wednesday, 12 February 2014 16:17
Login to post comments

NOTRad