MandysNotes

Tuesday, 13 November 2012 19:19

By  Gideon
Rate this item

${\color{Goldenrod}\sin}\ \left( {\color{MidnightBlue}z_{1}} + {\color{MidnightBlue}z_{2}} \right) = {\color{Goldenrod}\sin}\ {\color{MidnightBlue}z_{1}} \ {\color{Blue}\cos}\ {\color{MidnightBlue}z_{2}} \ + \ {\color{Blue}\cos}\ {\color{MidnightBlue}z_{1}}\ {\color{Goldenrod}\sin}\ {\color{MidnightBlue}z_{2}} \$

${\color{Blue}\cos}\ \left( {\color{MidnightBlue}z_{1}} + {\color{MidnightBlue}z_{2}} \right) = {\color{Blue}\cos}\ {\color{MidnightBlue}z_{1}} \ {\color{Blue}\cos}\ {\color{MidnightBlue}z_{2}} \ - \ {\color{Goldenrod}\sin}\ {\color{MidnightBlue}z_{1}}\ {\color{Goldenrod}\sin}\ {\color{MidnightBlue}z_{2}} \$

${\color{Green}\tan}\ \left( {\color{MidnightBlue}z_{1}} + {\color{MidnightBlue}z_{2}} \right) \ = \ \frac{ {\color{Green}\tan}\ {\color{MidnightBlue}z_{1}} \ + \ {\color{Green}\tan}\ {\color{MidnightBlue}z_{2}}\ } { 1 - {\color{Green}\tan}\ {\color{MidnightBlue}z_{1}} \ {\color{Green}\tan}\ {\color{MidnightBlue}z_{2}}\ }$

${\color{Brown} \cot}\ \left( {\color{MidnightBlue}z_{1}} + {\color{MidnightBlue}z_{2}} \right) \ = \ \frac{ {\color{Brown} \cot}\ {\color{MidnightBlue}z_{1}} \ {\color{Brown} \cot}\ {\color{MidnightBlue}z_{2}}\ - 1 } { {\color{Brown} \cot}\ {\color{MidnightBlue}z_{1}} \ \ + \ {\color{Brown} \cot}\ {\color{MidnightBlue}z_{2}}\ }$