# MandysNotes

## Mandy

Notice: Undefined property: JObject::\$description in /home/mandysno/public_html/templates/ja_university/html/com_k2/default/user.php on line 59

### The Addition Property of Equality

21 March 2010

For all real numbers A, B and C, the equations:

A = B and A + C = B + C are equivalent to one another.

The same number may be added to each side of an equation without altering the solution set.

### Linear Equations in One Variable

21 March 2010

As the name suggests, a linear equation in one variable implies that there is only ONE variable, and that the equation involves only real numbers. A linear equation in one variable can be written in this form: Ax + B = C where A does NOT equal zero.

A linear equation is also a first-degree equation, since the greatest power of any variable is 1.

Here are some examples of linear equations in one variable:

x + 2 = -1

x - 3 = 5

3k + 4 = 10

### Equations vs. Expressions - What's The Difference?

21 March 2010

Equations and Expressions are closely related.

The primary difference between the two is an equals sign. An "equation" has a left side, a right side and an equals sign separating the sides. An "expression," by contrast, doesn't have any "sides" and is simply what the name suggests: An algebraic "expression." Though sometimes it is possible to combine like terms, we are generally not expected to "do" or "solve" anything regarding expressions.

For example:

3x - 7 = 2

This is an EQUATION, because it has a left side, a right side, and an = sign separating the two.

3x - 7

This is an EXPRESSION, because there are no "sides" and no = sign.

### The Associative Property

20 March 2010

The Associative Property states that for any real numbers a, b and c:

a + (b + c) = (a + b) + c

a(bc) = (ab)c

With the Associative Property, parentheses amongst 3 terms/factors change, but the order of the terms stays the same.

Page 3 of 19